
	

	
	
			
			
							
					
					
						
					
				

							
											
							Home
	Profile
	Blog
	Chit Chats
	Downloads
	Contact Me

						
					
					
					
										
						
					

					
					
				
					Select Page
					
				

			
				

			

			
				
					
										

					
				

			

		
			
	

		
		
			
											
											
							Digitally sign and verify PDF documents in C# using iTextSharp 5.3.x library

						 by Rahul Singla | Sep 20, 2012 | .NET 2.0+, Blog, C# | 33 comments

												

				
					
					While working on a project, we recently came across a requirement to be able to digitally sign pdf documents in C# code using a public/private key pair and later be able to verify the signature. Basically we were working on an online e-Tendering portal for a semi-government organization. The organization wanted to accept documents from its Vendors online through a portal and be able to verify that the documents indeed originated from a particular Vendor. I would not go into the entire workflow here which is a bit complex, for simplicity you can assume the organization had the public keys for Vendors already stored in a secure database.

We were supposed to develop an easy to use desktop application which would allow Vendors to sign their pdf documents intuitively before submitting them to the Institute. Simultaneously a module was supposed to created in the organization’s portal that would allow Vendors to upload such signed documents, which would be verified for their signatures before being forwarded to various departments for processing.

We had been using the PdfSharp library extensively for various projects (one of which involved some complex pdf manipulation) with very good results. So when I took up this task today morning, I first started browsing PdfSharp’s API in hope of finding the classes and methods needed to sign and verify pdf documents. But I was to be disappointed, as I neither found anything in the API nor googling revealed any such feature in Pdfsharp library.

But I discovered the iTextSharp library in my Googling session which seemed to provide this feature. I downloaded the latest version (5.3.2 at the time of writing this blog post) but browsing the API up-front was not very meaningful. I again turned to Google which threw up this and this link with code samples for signing documents using iTextSharp. The first of these links was in Java while the second was in .Net. As I started adapting the code from these links, I realized many of the classes and methods being invoked were not present in my version of itextsharp.dll assembly. Somehow I assembled code for signing the document which seemed to work fine. And the signature information was visible when opening the document in a PDF reader.

As I approched the next step of verifying the signature (with code adapted from here), I was unable to verify the signature successfully even after making numerous revisions to the code. And I was back to square zero, signing a document without being able to verify the signature was pretty much useless.

I again went back googling. It was pretty much clear to me at this moment that iTextSharp library had undergone some considerable changes, and I needed code samples that would work with its latest version. Some frantic searching finally brought me over to the online version of the second edition of “iText in Action” book and then to this page from Chapter 12 of this book. I was pretty much sure now I had found what I needed.

Although the code samples were in Java and some aspects of the API are different in its .Net port, I was able to adapt the code from there and have it work in C#.

Without more of this introduction, I would now allow you to get your hands dirty with the actual code for signing a document using iTextSharp 5.3.x in .Net:

{syntaxhighlighter brush: csharp;fontsize: 100; first-line: 1; }/// <summary>

/// Signs a PDF document using iTextSharp library

/// </summary>

/// <param name=”sourceDocument”>The path of the source pdf document which is to be signed</param>

/// <param name=”destinationPath”>The path at which the signed pdf document should be generated</param>

/// <param name=”privateKeyStream”>A Stream containing the private/public key in .pfx format which would be used to sign the document</param>

/// <param name=”keyPassword”>The password for the private key</param>

/// <param name=”reason”>String describing the reason for signing, would be embedded as part of the signature</param>

/// <param name=”location”>Location where the document was signed, would be embedded as part of the signature</param>

public static void signPdfFile (string sourceDocument, string destinationPath, Stream privateKeyStream, string keyPassword, string reason, string location)

{

	Pkcs12Store pk12=new Pkcs12Store(privateKeyStream, keyPassword.ToCharArray());

	privateKeyStream.Dispose();

	//then Iterate throught certificate entries to find the private key entry

	string alias=null;

	foreach (string tAlias in pk12.Aliases)

	{

		if (pk12.IsKeyEntry(tAlias))

		{

			alias = tAlias;

			break;

		}

	}

	var pk=pk12.GetKey(alias).Key;

	// reader and stamper

	PdfReader reader = new PdfReader(sourceDocument);

	using (FileStream fout = new FileStream(destinationPath, FileMode.Create, FileAccess.ReadWrite))

	{

		using (PdfStamper stamper = PdfStamper.CreateSignature(reader, fout, ‘\0’))

		{

			// appearance

			PdfSignatureAppearance appearance = stamper.SignatureAppearance;

			//appearance.Image = new iTextSharp.text.pdf.PdfImage();

			appearance.Reason = reason;

			appearance.Location = location;

			appearance.SetVisibleSignature(new iTextSharp.text.Rectangle(20, 10, 170, 60), 1, “Icsi-Vendor”);

			// digital signature

			IExternalSignature es = new PrivateKeySignature(pk, “SHA-256”);

			MakeSignature.SignDetached(appearance, es, new X509Certificate[] { pk12.GetCertificate(alias).Certificate }, null, null, null, 0, CryptoStandard.CMS);

			stamper.Close();

		}

	}

}{/syntaxhighlighter}

The VSDoc comments at the top of the function should pretty much explain everything about the input parameters of this method to be able to call it.

And here’s the counter-part, a method to verify the signature of a previously signed PDF document:

{syntaxhighlighter brush: csharp;fontsize: 100; first-line: 1; }/// <summary>

/// Verifies the signature of a prevously signed PDF document using the specified public key

/// </summary>

/// <param name=”pdfFile”>a Previously signed pdf document</param>

/// <param name=”publicKeyStream”>Public key to be used to verify the signature in .cer format</param>

/// <exception cref=”System.InvalidOperationException”>Throw System.InvalidOperationException if the document is not signed or the signature could not be verified</exception>

public static void verifyPdfSignature (string pdfFile, Stream publicKeyStream)

{

	var parser=new X509CertificateParser();

	var certificate=parser.ReadCertificate(publicKeyStream);

	publicKeyStream.Dispose();

	PdfReader reader = new PdfReader(pdfFile);

	AcroFields af = reader.AcroFields;

	var names = af.GetSignatureNames();

	if (names.Count == 0)

	{

		throw new InvalidOperationException(“No Signature present in pdf file.”);

	}

	foreach (string name in names)

	{

		if (!af.SignatureCoversWholeDocument(name))

		{

			throw new InvalidOperationException(string.Format(“The signature: {0} does not covers the whole document.”, name));

		}

		PdfPKCS7 pk = af.VerifySignature(name);

		var cal = pk.SignDate;

		var pkc = pk.Certificates;

		if (!pk.Verify())

		{

			throw new InvalidOperationException(“The signature could not be verified.”);

		}

		if (!pk.VerifyTimestampImprint())

		{

			throw new InvalidOperationException(“The signature timestamp could not be verified.”);

		}

		Object[] fails = CertificateVerification.VerifyCertificates(pkc, new X509Certificate[] { certificate }, null, cal);

		if (fails != null)

		{

			throw new InvalidOperationException(“The file is not signed using the specified key-pair.”);

		}

	}

}{/syntaxhighlighter}

Again the VSDoc comments should explain how to call this method.

This code was assembled quickly and can certainly be improved (e.g, allow multiple iterations of signing with different public keys and corresponding verification, use a custom image for signature). Nevertheless, it should provide a base for quickly starting to use .Net’s version of iTextsharp library and building from here. You would fine iText in Action book very helpful for real-world examples and explanation on how to use this library.

					

					
					

	33 Comments

			
						
		
			
							

			
				ase				
				on October 19, 2012 at 4:45 am				
										

			
				
				
				In our case we passed a X509Certificate2 as argument how can we adjust your example so it works? Thanks beforehand

public static string FirmarPDF(X509Certificate2 signature, string sourceDocument, string destinationPath)

 {

 if (signature== null)

 {

 return “Invalid signature.”;

 }

 // reader and stamper

 PdfReader reader = new PdfReader(sourceDocument);

 using (FileStream fout = new FileStream(destinationPath, FileMode.Create, FileAccess.ReadWrite))

 {

 using (PdfStamper stamper = PdfStamper.CreateSignature(reader, fout, ‘\0’))

 {

 // appearance

 PdfSignatureAppearance appearance = stamper.SignatureAppearance;

 //appearance.Image = new iTextSharp.text.pdf.PdfImage();

 appearance.Reason = “”;

 appearance.Location = “”;

 //appearance.SetVisibleSignature(new iTextSharp.text.Rectangle(20, 10, 170, 60), 1, “Icsi-Vendor”);

 // digital signature

 //how to instanciate es with a X509Certificate2??

 IExternalSignature es = new PrivateKeySignature(pk, “SHA-256”);

 Org.BouncyCastle.X509.X509CertificateParser cp = new Org.BouncyCastle.X509.X509CertificateParser();

 Org.BouncyCastle.X509.X509Certificate[] chain = new[] { cp.ReadCertificate(signature.RawData) };

 try

 {

 MakeSignature.SignDetached(appearance, es, chain, null, null, null, 0, CryptoStandard.CMS);

 }

 catch (CryptographicException ex)

 {

 switch (ex.Message)

 {

 case “Action aborted by user.\r\n”:

 return ex.Message;

 case “Key not found.\r\n”:

 return “Signature not found in your computer.”;

 }

 throw;

 }

 stamper.Close();

 return “Correct”;

 }

 }

 }

Reply				

			

		

	
		
			
							

			
				Julien				
				on December 11, 2012 at 4:53 am				
										

			
				
				
				I just want to thank you !! great article. I was looking for a clear explanation using the latest version of this librairy ! I was quite surprised to see the changes done over the year in this library without clear explanation. Most of the exemples I found on the web used methods which doesn’t exist anymore …

Reply				

			

		

	
		
			
							

			
				Foakleys				
				on December 26, 2012 at 8:40 am				
										

			
				
				
				hard to understand

Reply				

			

		

	
		
			
							

			
				Martha Vella				
				on March 12, 2013 at 4:42 pm				
										

			
				
				
				I understand that This code was assembled quickly and can certainly be improved. But I needed something and yes I found it, thanks a lot for this

Reply				

			

		

	
		
			
							

			
				Hasan				
				on March 14, 2013 at 5:42 am				
										

			
				
				
				Hi,

This is good example that i never seen any where on the internet. i want to know about the “how i convet or you can say extrect the Private key stream from the PFX certificate” i found a code for that sepecific part but it didnt work.

Thanks
Hasan

Reply				

			

		

	
		
			
							

			
				Hasan				
				on March 14, 2013 at 5:47 am				
										

			
				
				
				Here i my code for that.

public static Stream PrivateKeystreem(string FileName, string Password, string directory)
 {
 MemoryStream memoryStream = new MemoryStream();
 try
 {
 Logger.LogErrorMessage(FileName, directory);
 X509Certificate2 certificate = new X509Certificate2(FileName, Password, X509KeyStorageFlags.Exportable | X509KeyStorageFlags.PersistKeySet);
 Logger.LogErrorMessage(“reading certificate dane”, directory);

 RSACryptoServiceProvider rsa = (RSACryptoServiceProvider)certificate.PrivateKey;
 Logger.LogErrorMessage(“PrivateKey formating done dane”, directory);

 Logger.LogErrorMessage(“Start Stream Writing”, directory);
 TextWriter streamWriter = new StreamWriter(memoryStream);
 PemWriter pemWriter = new PemWriter(streamWriter);
 Logger.LogErrorMessage(“Stream Writing Done”, directory);

 AsymmetricCipherKeyPair keyPair = DotNetUtilities.GetRsaKeyPair(rsa);
 pemWriter.WriteObject(keyPair.Private);
 streamWriter.Flush();

 // Here is the output with —BEGIN RSA PRIVATE KEY—
 // that should be exactly the same as in private.pem
 return memoryStream;

 }
 catch (Exception ex)
 {
 Logger.LogErrorMessage(ex.Message, directory);
 return memoryStream;
 }

 }

Reply				

			

		

	
		
			
							

			
				Hasan				
				on March 15, 2013 at 4:01 am				
										

			
				
				
				Hi,

My senerio is so deficult i worked on that from last 1.5 month but still in trubale this is not that code that i want i need the key anableing code. i have a certifcates from and company in CER formate and i want to convert those certificates in to PFX formate i want to sign the PDF document using those file and there private keys. i cann’t make my own keys. so this didnt help me.

thanks for your replay.

Hasan

Reply				

			

		

	
		
			
							

			
				Francisco				
				on April 10, 2013 at 11:22 am				
										

			
				
				
				i think it could really useful for me, but i need some help by doing the previous step of generation of the public and private keys, do you have some information about it? Please let me know if you can help me.

Thanks in advance.
PS. sorry for the grammar English is not me mother language.

Reply				

			

		

	
		
			
							

			
				Santiago				
				on April 17, 2013 at 12:36 pm				
										

			
				
				
				Hi Francisco, check this.

You can use the following commercial API for your purpose: http://www.signfiles.com/x509-certificate-library/

It has been a great help in my project. Greetings from Mexic

Reply				

			

		

	
		
			
							

			
				Francisco				
				on April 19, 2013 at 3:42 pm				
										

			
				
				
				well thanks again for your help, but i have another problem, i made the sign fine, with this.

 string cnPrefix = “CERT”; //Prefijo;

 int qty = 1; //cantidad de certificados

 ContainerType cType = (ContainerType)Enum.Parse(typeof(ContainerType), “PKCS12”); //tipo de contenedor

 HashType hType = (HashType)Enum.Parse(typeof(HashType), “SHA256withRSA”);

 int bitStrength = 2047;

 DateTime validFrom = DateTime.Now; //fecha de validez inicial

 DateTime validTo = validFrom.AddYears(1); //fecha de validez final

 string destDir = “c:\\”; //destino del archivo

 string password = “password”; //password

 // Kick off GenerateCertificates()

 GenerateCertificates(cnPrefix, qty, cType, hType, bitStrength, validFrom, validTo, destDir, password);

 Signer signer = new Signer();

 FileStream fileStream = new FileStream(“C:\\CERT0-2047-SHA1withRSA.pfx”, FileMode.Open);

 signer.signPdfFile(“C:\\NB-SP.pdf”, “D:\\test.pdf”, fileStream, “password”, “test”, “AJ”);

 fileStream.Close();

this code made a certificate first and use your code to sign. at this point everything is fine

but when i tried to verify the signed pdf there is a problem. first i obtain the public sign with

 X509Certificate2 certificate = new X509Certificate2(“C:\\CERT0-2047-SHA1withRSA.pfx”, password, X509KeyStorageFlags.Exportable | X509KeyStorageFlags.PersistKeySet);

 // Public Key;

 StringBuilder publicBuilder = new StringBuilder();

 publicBuilder.AppendLine(“—–BEGIN CERTIFICATE—–“); publicBuilder.AppendLine(Convert.ToBase64String(certificate.Export(X509ContentType.Cert), Base64FormattingOptions.InsertLineBreaks));

 publicBuilder.AppendLine(“—–END CERTIFICATE—–“);

 publicBuilder.ToString();

 System.Console.WriteLine(publicBuilder.ToString());

 File.WriteAllText(“c:\\cert.ce”, publicBuilder.ToString());

 fileStream = new FileStream(“c:\\cert.ce”, FileMode.Open);

and the exception is thrown

Excepción no controlada: System.InvalidOperationException: The signature timestamp could not be verified.

 en TestCrypto.Signer.verifyPdfSignature(String pdfFile, Stream publicKeyStrea

m) en C:\Users\jalvarez.AJNACIONAL\Documents\Visual Studio 2010\Projects\TestCry

pto\TestCrypto\Signer.cs:línea 103

the same for the next step

Excepción no controlada: System.NullReferenceException: Referencia a objeto no e

stablecida como instancia de un objeto.

 en iTextSharp.text.pdf.security.CertificateVerification.VerifyCertificate(X50

9Certificate cert, ICollection`1 crls, DateTime calendar)

 en iTextSharp.text.pdf.security.CertificateVerification.VerifyCertificates(IC

ollection`1 certs, ICollection`1 keystore, ICollection`1 crls, DateTime calendar

)

 en TestCrypto.Signer.verifyPdfSignature(String pdfFile, Stream publicKeyStrea

m) en C:\Users\jalvarez.AJNACIONAL\Documents\Visual Studio 2010\Projects\TestCry

pto\TestCrypto\Signer.cs:línea 106

i don’t understand why of this can you tell me what is happen?

Reply				

			

		

	
		
			
							

			
				Stephen Lynch				
				on April 26, 2013 at 6:03 pm				
										

			
				
				
				Thank you so much. I had been strugling for days.

How would you change the background of the signature and also add an image?

Reply				

			

		

	
		
			
							

			
				Hiral				
				on May 14, 2013 at 5:24 am				
										

			
				
				
				I m getting error, type “Pdfstamper” is not defined

Reply				

			

		

	
		
			
							

			
				Adam				
				on May 31, 2013 at 1:52 am				
										

			
				
				
				Hi Rahul,

Just wanted to say thanks for your article, it helped me out a lot.

Adam

Reply				

			

		

	
		
			
							

			
				Frankliin				
				on August 3, 2013 at 3:01 am				
										

			
				
				
				 What is privateKeyStream?How can i get privateKeyStream?

Reply				

			

		

	
		
			
							

			
				AMIT KUMAR				
				on September 27, 2013 at 1:42 am				
										

			
				
				
				hi..

i am new to c#. please help me

how can i get certificates already installed on system for signing.

certificates can be view in control panel-> internet option->content -> certificates ->personal

Reply				

			

		

	
		
			
							

			
				pavan				
				on December 7, 2013 at 2:37 am				
										

			
				
				
				hi, I am using .java library for signing a pdf file with pfx.

but it is very slow. as my complete application is in php. and i am using my application in linux and windows environment.

can you please help me in solving this.

Reply				

			

		

	
		
			
							

			
				isbah				
				on March 21, 2014 at 6:02 am				
										

			
				
				
				when i try to give password in the line as

keyPassword = “123456789”;(the password i gave when creating private key)

Pkcs12Store pk12=new Pkcs12Store(privateKeyStream, keyPassword.ToCharArray());

it is giving an error as :

PKCS12 key store MAC invalid – wrong password or corrupted file.

can u please solve my problem. thanks

Reply				

			

		

	
		
			
							

			
				tushar				
				on April 8, 2014 at 7:36 am				
										

			
				
				
				i am getting this error. i have not modified your code.

can you please tell briefly which streams to use and which file paths to give as i am confused.

i have exported private key and give its path in “signPdfFile” method.

and exported the public key and given its path in “verifyPdfSignature” method.

i am using self-signed certificate from IIS.

can you please provide a full sample with all files…

please…

thank you

Reply				

			

		

	
		
			
							

			
				tushar				
				on April 9, 2014 at 7:09 am				
										

			
				
				
				Sorry, i forgot.

The signature timestamp could not be verified.

this is the error.

please also tell me if i am using correct files from my previous post.

Reply				

			

		

	
		
			
							

			
				LuisO				
				on May 1, 2014 at 11:25 am				
										

			
				
				
				Rahul, you save me a lot of time. Thank you so much.

LuisO

Reply				

			

		

	
		
			
							

			
				Luc Vandenbroucke				
				on May 28, 2014 at 4:12 pm				
										

			
				
				
				just what I needed … nice wofk

thanks

Reply				

			

		

	
		
			
							

			
				Victor				
				on May 28, 2014 at 8:02 pm				
										

			
				
				
				Great jobs Rahul, thanks a lot.

How i can read certificates from personal store and sign it? like Ms Office (word and outlook) attach signatures.

thanks in advance

Reply				

			

		

	
		
			
							

			
				Nayak				
				on May 31, 2014 at 8:14 am				
										

			
				
				
				Please help i read the above but unable to rectify the line given

var akp = Org.BouncyCastle.Security.DotNetUtilities.GetKeyPair(signature.PrivateKey).Private;

 IExternalSignature es = new PrivateKeySignature(akp, “SHA-256”);

Error:– “Key not valid for use in specified state.”

Reply				

			

		

	
		
			
							

			
				Nayak				
				on June 2, 2014 at 6:49 am				
										

			
				
				
				using (PdfStamper stamper = PdfStamper.CreateSignature(reader, fout, ‘\0’))

 {

 PdfSignatureAppearance appearance = stamper.SignatureAppearance;

 appearance.SignatureRenderingMode = PdfSignatureAppearance.RenderingMode.GRAPHIC_AND_DESCRIPTION;

 appearance.Reason = “”;

 appearance.Location = “”;

 appearance.SetVisibleSignature(new iTextSharp.text.Rectangle(20, 10, 170, 60), 1, “Icsi-Vendor”);

 if (signature.HasPrivateKey == true)

 {

 IExternalSignature es = new X509Certificate2Signature(signature, “SHA-1”);

 Org.BouncyCastle.X509.X509CertificateParser cp = new Org.BouncyCastle.X509.X509CertificateParser();

 Org.BouncyCastle.X509.X509Certificate[] chain = new[] { cp.ReadCertificate(signature.RawData) };

 try

 {

 MakeSignature.SignDetached(appearance,es, chain, null, null, null, 0, CryptoStandard.CMS);

 }

By this code signature attached but it ask the password by dilog every time. can i put password one to process large number of files.

Reply				

			

		

	
		
			
							

			
				Amit kumar				
				on June 4, 2014 at 2:22 pm				
										

			
				
				
				hi..

i have signed pdf but it sign only a fixed page as first or sencond or third page.

i need to set option for user to sign :

all page

first page

even page

odd page

last page

selected page

Reply				

			

		

	
		
			
							

			
				Nayak				
				on June 24, 2014 at 7:42 am				
										

			
				
				
				i have to sign in pdf but the signature property hasprivatekey was false so i unable to use this in my programme. how to use this type of signatures . as programme bellow.

it show error in this line IExternalSignature es = new X509Certificate2Signature(st, “SHA-1”);

if (st.HasPrivateKey == false)

 {

 IExternalSignature es = new X509Certificate2Signature(st, “SHA-1″);//”sha256”);//

 Org.BouncyCastle.X509.X509CertificateParser cp = new Org.BouncyCastle.X509.X509CertificateParser();

 Org.BouncyCastle.X509.X509Certificate[] chain = new[] { cp.ReadCertificate(st.RawData) };

 PdfReader reader = new PdfReader(“C:\\abcd.pdf”);

 using (FileStream fout = new FileStream(“C:\\OutPut.pdf”, FileMode.Create, FileAccess.ReadWrite))

 {

 using (PdfStamper stamper = PdfStamper.CreateSignature(reader, fout, ‘\0’))

 {

 PdfSignatureAppearance appearance = stamper.SignatureAppearance;

 appearance.Contact = Contacttext.Text;

 appearance.Reason = Reasontext.Text;

 appearance.Location = Locationtext.Text;

 appearance.SetVisibleSignature(new iTextSharp.text.Rectangle(Convert.ToInt32(X.Text.ToString().Trim()), Convert.ToInt32(Y.Text.ToString().Trim()), Convert.ToInt32(X1.Text.ToString().Trim()), Convert.ToInt32(Y1.Text.ToString().Trim())), int.Parse(TxtPageNo1.Text), null);

 }

 try

 {

 MakeSignature.SignDetached(appearance, es, chain, null, null, null, 0, CryptoStandard.CMS);

 }

Reply				

			

		

	
		
			
							

			
				CHIRAG BHATIA				
				on July 8, 2014 at 12:53 am				
										

			
				
				
				Hiiiii rahul

Your code is superb, but as i am a new to asp.net and crypography , digital certificates, pls help me to find out, how to Digital Sign pDF in webbrowser , where Certficate from Smart Card is picked up from client side using client Store and user Digitally Sign PDf using his Certificate, Pls help as i am serching it from last 1month in google but no help

Reply				

			

		

	
		
			
							

			
				Fotis				
				on September 12, 2014 at 6:06 am				
										

			
				
				
				Hi,

i need your lights here. I was trying to

a) open an existing pdf file

b) sign it

c) lock it.

But i experience some issues here. When i first sign and then try to lock it finally i am loosing the signature. When i firts lock and then sign then i am loosing the lock (SetEncryption). Do you have any idea how i can implement that?

Thx anyway

Reply				

			

		

	
		
			
							

			
				User				
				on September 30, 2014 at 1:36 am				
										

			
				
				
				Sir,

I get two errors

1.

	if (!pk.VerifyTimestampImprint())

	38	 {

	39	 throw new InvalidOperationException("The signature timestamp could not be verified.");

	40	
 }

One for this one. “The signature timestamp could not be verified.”

2. Otherone while i try to verify CertificateVerification.verifyCertificates.. i tried to change from

Object[] fails = CertificateVerification.VerifyCertificates(pkc,new X509Certificate[] { certificate }, null, cal);

to

 List<VerificationException> errors = CertificateVerification.verifyCertificates(pkc, ks, null, cal);

But get null exception error.

I have a pfx file and generated crt from it. Can you please help.

Reply				

			

		

	
		
			
							

			
				Snehal				
				on July 30, 2020 at 5:33 am				
										

			
				
				
				I am getting error “The Type or Namespace name ‘IExternalSignature’ could not be found” . I have included namespace

using iTextSharp.text.pdf;

using iTextSharp.text.xml.xmp;

using iTextSharp.text.pdf.security;

still showing error

Reply				

			

		
	
		
			
							

			
				Rahul Singla				
				on July 30, 2020 at 6:29 am				
										

			
				
				
				Hi Snehal,

With the version of itextsharp.dll being used when this post was originally written, ‘IExternalSignature’ was present in this namespace:

iTextSharp.text.pdf.security

I have uploaded the version of the dll here:

https://drive.google.com/file/d/1UdJNFFraYRR8aZqTVLPv7hS9sWiGlyzM/view?usp=sharing

PS: It’s a very old version from 2014.

Reply				

			

		
	
		
			
							

			
				Snehal				
				on July 30, 2020 at 10:47 am				
										

			
				
				
				Hi Rahul,

 Thanks for your reply.

I have 3 pages in my pdf and I want to add signature to all 3 pages. How can I do it using iTextSharp.pdf

Reply				

			

		
	
		
			
							

			
				Rahul Singla				
				on August 3, 2020 at 6:44 am				
										

			
				
				
				Well Snehal, I will need to check the api / SDK docs for iTextsharp myself for that as I haven’t tried that myself. You can better ask this on StackOverflow and tag iTextSharp.

Reply				

			

		

		
		
							
		Submit a Comment Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

 Save my name, email, and website in this browser for the next time I comment.

				
					
						
							
								
							

						

						
							
						

					

				

Δ

	

	This site uses Akismet to reduce spam. Learn how your comment data is processed.
						

				

						

				
		
				
					Search for:
					
					
				

			

		
		Recent Posts

			
					Git – Recovering from bare Remote Repository corruptions
									
	
					Git – Fixing a botched commit / push to a bare repository
									
	
					PowerShell – Assigning Global variable inside a function does not actually over-write the global one
									
	
					Debugging redirects in Drupal 8/9
									
	
					Drupal 8 / 9 – Handling raw file uploads bypassing the Form API (FAPI)
									

		
 Recent Comments
	Kontraktor pameran on Drupal 7 – Creating arbitrary ANDed/ORed database queries using the DBTNG abstraction layer
	Rahul Singla on Making SameSite cookies work in older versions of .Net
	sumanth on Making SameSite cookies work in older versions of .Net
	Rahul Singla on Making SameSite cookies work in older versions of .Net
	sumanth on Making SameSite cookies work in older versions of .Net

 Archives

				January 2024
	May 2023
	January 2023
	July 2021
	June 2021
	September 2020
	August 2020
	April 2020
	March 2020
	May 2019
	October 2015
	October 2014
	September 2014
	November 2013
	March 2013
	September 2012
	August 2012
	June 2012
	May 2012
	March 2012
	February 2012
	January 2012
	December 2011
	November 2011
	October 2011
	September 2011
	August 2011
	July 2011
	June 2011
	May 2011
	April 2011
	March 2011
	February 2011
	January 2011
	December 2010
	November 2010
	October 2010
	September 2010
	August 2010
	July 2010
	June 2010
	May 2010
	April 2010
	March 2010
	February 2010
	January 2010
	December 2009
	November 2009
	October 2009
	September 2009

			
 Meta

			Log in
	Entries feed
	Comments feed
	WordPress.org

		
 Categories

				.NET 2.0+

	.NET 4.0+

	.NET 4.5+

	AS 3

	ASP.NET

	ASP.NET 4.0

	ASP.NET MVC

	Blog

	C#

	Coolite

	Crystal Reports

	Custom Controls

	Desktop App

	DNN 5.x

	DNN 6.x

	DNN 7.x

	DotNetNuke

	DotNetNuke 4.x

	DotNetNuke 5.x

	DotNetNuke 6.x

	DotNetNuke 7.x

	Drupal

	Drupal 6.x

	Drupal 7.x

	Drupal 8.x

	Drupal 9.x

	Encryption

	EWS Managed API

	Exchange

	Exchange 2007

	Exchange 2010

	Ext.Net

	Ext.Net 1.x

	Ext.Net 2.x

	ExtJs

	ExtJs 3.x

	ExtJs 4.x

	ExtJs 6.x

	ExtJs 7.x

	ExtJs Modern

	Flash

	Git

	HighCharts

	IIS

	IIS 7

	Javascript

	JME

	jQuery

	jQuery UI

	Office

	Open Xml Power tools

	Open Xml SDK

	PHP

	PHP 5.x

	PHP 7.x

	PowerShell

	PowerShell 2

	Programming Techniques

	Sencha Touch

	SMTP

	Software

	Sql Server

	Sql Server 2005

	Sql Server 2008

	Swing App

	TC/TC++

	TeamCity

	TeamCity 8.x

	Touch 2.x

	VB.NET

	Views

	Views 3.x

	Visual Studio

	Voip Drupal

	Web App

	Windows

	Windows 7

	Windows Server

	Windows Server 2003

	Windows Server 2008

	Windows Server 2012

	Word

			
 			Chit Chat
				
										Revamping the theme on my website
														
	
										And oh, my next book project was released this February
														
	
										Support Wikipedia
														
	
										Drupal Association Individual Member
														
	
										Hosting Blues
														

			
 			Projects
				
										Orkut
														
	
										Drupal Document module
														
	
										Drupal – Reference Links Module
														
	
										Drupal – Take Control module
														
	
										Face Recognition
														

			
 	

		

	

	

			
				

		
				
					
				Designed by Elegant Themes | Powered by WordPress
					
	
				

			
		

	

	

	
	

